Numerical investigation of fracture interface waves
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Two-dimensional boundary element simulations are conducted to investigate the properties of
Rayleigh-type fracture interface waves generated by a line source located near a single fracture. The
fracture is modeled as a displacement—discontinuity boundary condition between two elastic
half-spaces with identical properties. Numerical simulations are performed for different fracture
stiffnesses, source polarizations, and source depths. Symmetric and antisymmetric fracture interface
waves are observed with amplitudes and velocities that are controlled by the ratio of the fracture
impedance to the half-space shear wave impedance, as predicted by plane-wave theory [Gu et al.,
1. Geophys. Res. 101, 827-835 ( 1996); Pyrak-Nolte and Cook, Geophys. Res. Lett. 14, 1107-1110
(1987)]. When the source is located off the fracture, these waves develop at incidence angles that

decrease with source depth. [S0001-4966(97)02207-8]

PACS numbers: 43.20.Gp, 43.20.Jr [JEG]

INTRODUCTION

Fractures in brittle materials such as rock and concrete
are typically surfaces of irregular topography. Small amounts
of relative motion between these surfaces can produce im-
perfect contact. Imperfect contact between the surfaces re-
sults in a thin, compliant interface of negligible thickness
and density. Investigators in the fields of nondestructive
evaluation and geophysics‘?4 have recognized that this addi-
tional compliance results in jumps in the normal and tangen-
tial displacements across the fracture that are proportional to
the applied stress and compliance of the fracture. This work
has established that the linear constitutive relations for a
fracture can be described by a displacement—discontinuity
boundary condition provided that the wavelength is long
relative to the spacing between asperities of contact within
the fracture.

Recent theoretical and experimental research has dem-
onstrated that a single nonwelded interface, such as a fracture
or an imperfect bond, can support Rayleigh-type interface
waves which propagate along the fracture.>™ The amplitudes
and velocities of these interface waves are sensitive to the
magnitude of the shear and normal stiffnesses of the non-
welded interface, making these waves potentially useful for
applications involving interface characterization.

Murly7 examined the conditions for the existence of in-
terface waves on a nonwelded interface with a discontinuity
in the shear displacement across the interface. Pyrak-Nolte
and Cook® extended Murty’s analysis to the case where both
normal and shear displacements are discontinuous across a

nonwelded interface. Gu ef al.> demonstrated that simple,

closed-form dispersion equations for interface waves propa-
gating along a single fracture could be obtained from the
matrix equation developed by Pyrak-Nolte and Cook.® The
basic form of these dispersion equations is similar to the
classic Rayleigh equation for a surface wave on a half-space
except that the symmetric and antisymmetric fracture inter-
‘face waves are controlled by the fracture impedance ratio
(i.e., ratio of the fracture impedance to the half-space shear
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wave impedance). For low values of the fracture impedance
ratio, the dispersion equations for the symmetric and anti-
symmetric fracture interface waves degenerate to the classic
nondispersive equation for Rayleigh waves on a half-space.
For large values of the fracture impedance ratio, the symmet-
ric wave reaches a cutoff value and ceases to exist as a nor-
mal mode, while the antisymmetric wave degenerates (o a
shear body wave propagating along the fracture. For inter-
mediate values of the fracture impedance ratio, both waves
are dispersive with the symmetric wave propagating faster
than the antisymmetric wave for a given value of the fracture
impedance ratio.

While the plane-wave analysis successfully predicts the
velocities of fracture interface waves observed in laboratory
measurements on fractures,® it does not provide information
about the generation of these waves by a spatially localized
source. In this paper, the generation of fracture interface
waves from a line source is investigated using the boundary
element method. The paper begins with a brief discussion of
the boundary element method formulation for an elastic me-
dium containing a single fracture. The following section de-
scribes techniques for generating symmetric and antisym-
metric fracture interface waves and evaluates the effects of
the fracture impedance ratio on wave amplitudes and veloci-
ties. The final section investigates the influence of source
distance from the fracture on the generation of fracture inter-
face waves.

i. BOUNDARY ELEMENT METHOD FOR FRACTURED
MEDIA

The boundary element method is an accurate and com-
putationally efficient numerical technique for modeling elas-
tic wave propagation in a medium containing fractures. '
Unlike the finite element and finite difference methods,
which employ space-filling numerical meshes, the boundary
clement method only requires discretization of the fracture
and employs the fundamental point source solution. Conse-
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quently, the boundary element method is less susceptible to
numerical dispersion for wave propagation problems.

An efficient two-dimensional boundary integral equation
is developed by numerical integration of the three-
dimensional boundary integral equations along the axis or-
thogonal to the plane of interest. The advantages of this ap-
proach are that the coefficient matrix for only the first time
step needs to be assembled and solved, and that singularities
of the Green’s functions can be significantly reduced. !

For problems with zero initial conditions, the time-
domain form of the three-dimensional boundary integral
equation may be written as'!

cij(Eu €)= JAI‘{‘GU* 7%, 1) — Fipru(x, 1)}l

+prG”*bI(X,T)dQ, (l)

where u;(£,1) is the i component of the particle displacement
observed at location &, u;(x,t) and 7,(x,f) are the i compo-
nent of the displacement and traction on the fracture surface
I', G;; is the three-dimensional Green’s function for an un-
bounded elastic medium, F ij is the traction derived from
G; using Hooke’s Law, b,(x,7) is a volumetric source acting
in volume }, * is the time convolution operator, ¢;; is the
free-term resulting from the singularity of F;; as £—x, and
i, j=1,2 for in-plane problems.

To solve the boundary integral equation for boundary
displacements and tractions, the fracture surfaces are divided
into boundary elements and the boundary variables are dis-
cretized in both the space and time. The discretization here is
completed using quadratic shape functions and the Heaviside
function for the spatial coordinate along the fracture,

xi=MyXiq, ) 2)

and the displacement and traction along the fracture,“

N
U&= 2, MU ®M1),
n=1

N
TED= 2 M TP,
h=
where X, is the nodal coordinate of the element, U7, and
T}, are the nodal displacement and traction, respectively,
M, is a quadratic shape function, ®*(r)=H[r—(n—1)At]
—H[t—nAr], where H[-] is the Heaviside function, n
=1,2,3,...,N is the time step, and @=1, 2, and 3 represents
the nodal points on a single boundary element."
In the numerical model, the fracture is modeled as a
displacement—discontinuity boundary condition between two

elastic hanlf-spaces.2 Across such a discontinuity, stresses are -

continuous and particle displacements are discontinuous. For
in-plane motion, the displacement—discontinuity boundary
conditions are

7'?2 =T, )

where superscripts a and b denote the half-space above and
below the fracture, respectively, k; is the fracture stiffness in

a_ , bh_ _ua
ui—u; =151k,
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FIG. 1. Displacement-discontinuity fracture model. k; and &, are the tan-
gential and normal fracture stiffnesses.

the i direction, and i=1,2 (see Fig. 1). As k;,— o, the inter-
face becomes welded and the particle displacements across
the fracture are continuous. As k;— 0, the two surfaces of the
fracture become two traction-free surfaces.

For elastic wave transmission across a single natural
fracture in granite, the ultrasonic measurements of Pyrak-
Nolte et al.® were found to exhibit frequency-dependent am-
plitude reductions that are well predicted by plane-wave
transmission coefficients derived using the displacement-
discontinuity boundary conditions given in Eq. (4). The
displacement-—discontinuity model has also been used exten-
sively by researchers in nondestructive evatuation of welds
and adhesive bonds® with considerable success.

The boundary integral equation given in Eq. (1) can be
assembled to form a system of the discretized boundary in-
tegral equations for a medium containing a fracture using
Egs. (1), (2), and (3) and applying the displacement-
discontinuity boundary condition of Eq. (4). The resulting
linear system of such discretized equations has the following

form:°
a a i , 3
F{i+k Gy Fioatk Gy,

17 a
ntkaGy
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where {B}" is the accumulated boundary displacements from
time step 1 to n—1, and [ -]" is the coefficient matrix for the
first time step. Since all quantities in {B}" and [-]' are
known, the displacements {U}" on the fracture surfaces at a
time step n can be obtained by the numerical solution of Eq.
(5). Interior displacements can be obtained by direct numeri-
cal integration of Eq. (1) once the displacements and trac-
tions on the surfaces of the fracture are known.

ll. FRACTURE INTERFACE WAVES

The analyses of Pyrak-Noite and Cook® and Gu et al’
and laboratory measurements of Pyrak-Nolte er al.® demon-
strate that a fracture can support dispersive symmetric (i.e.,
extensional mode) and antisymmetric (i.e., flexural mode)
interface waves that propagate between the Rayleigh wave
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FIG. 2. Simulation geometry used to generate (a) symmetric and (b) anti-
symmetric fracture interface wavcs.

and shear wave velocities. The dispersion equations for sym-
metric and antisymmetric fracture interface waves (Fig. 3)

are 5

(1-28)2—4&V8 - PP -1 -2k 8- 1

=0, symmetric wave (6)
(1=28)2 =48 g - 2V - 1- 2k, V& -1
=0, antisym.metric wave. : _ @)

In Egs. (6) and (7), &=c,/c is the ratio of shear wave ve-
locity to the interface wave velocity, {=c,/c, is the ratio of
the shear wave velocity to the compressional wave velocity,
and l?l:(kl/w)/zs and k_2=(k2/w)/zs are the nondimen-
sional fracture impedanee ratios, where (k;/w) is the fracture
impedance (fracture stiffness divided by the angular fre-
quency) and z; is the shear wave impedance (density multi-
plied by the shear wave velocity).

Equations (6) and (7) reveal that the velocities of the
two interface waves are functions of the nondimensional
fracture impedance ratios &, 1 and k_2, arid the Poisson’s ratio
of the half-spaces v=0.5[({"*—2)/({"*~1)]. Numerical
solution of Eqs. (6) and (7) shows that with increasing the
fracture impedance ratios, the velocities of the symmetric
and antisymmetric interface waves increase from the Ray-
leigh wave velocity to the shear wave velocity.™® The par-
ticle motions of both waves are elliptical retrograde near the
fracture, reversing to prograde at less than a wavelength
away from the fracture.

For the horizontal source conhgurdtlon of Fig. 2(a),
source—fracture symmetry requires that the shear stresses on
the upper and lower surfaces vanish and the horizontal dis-
placements on the upper and fower surfaces be equal,

b 1 .. b ’
5= 11,=0, uj=u’. . (®)

Equations (8) reveal that the displacement —discontinuity
boundary condition for the fracture, uf—u%= 70,1k, is al-
ways satisfied. This indicates that the tangential fracture
stiffness has no effect on the symmetric fracture interface
wave. Similarly, it can also be demonstrated that the normal
fracture stiftness has no effect on the antisymmetric fracture
interface wave (Fig. 3). The dependence of the symmetric
and antisymmetric fracture interface waves on the fracture
stiffness is consistent with that predicted by Egs. (6) and (7).
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FIG. 3. Schematic illustration of the particle displacements of the symmetric
and antisymmetric fracture intcrface waves,

A. Effect of fracture stiffness

To evaluate the effects of fracture stiffness on fracture
interface waves generated by a line source, a series of two-
dimensional boundary element simulations were performed.
The half-spaces were assigned properties typical of granite:
compressional and shear wave velocities ¢,= 5800 m/s and
c,=3800m/s, and density p=2600 kglm The two-
dimensional fracture consisted of a line 76.0 m in length
which was discretized into 100 guadratic elements. The
source wavelet was a broadband three-loop. wavelet with a
central frequency of 800 Hz. The computation was carried
out to 20.1 ms in 310 time steps.

Snapshots of the horizontal displacement at 10.37 ms are
displayed for a completely welded fracture (k;=k,=) and
a nonwelded fracture (k,=5X 10° Pa/m) in Figs. 4 and 5 for
the two source configurations shown in Fig. 2. Figures 4 and
5 provide visual evidence that a compliant fracture concen-
trates wave energy along the fracture in the form of Rayleigh

source

source

3.3e-06

-3.3e-06

-6.7¢-06 0.0600

FIG. 4. Horizontal displacements near a fracture of (a) k|, =k, =0 (an infi-
nite space) and (b) k,=5x 10° Pa/m for the source—fracture configuration
shown in Fig. 2(a). A Rayleigh-type intetface wave RIW and a head wave
HW are present on the finite stiffness fracture in addition to the body com-
pressional and shear waves.
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FIG. 5. Horizontal displacements near a fracture of (a) k, =k, = (an infi-
nite space) and (b) k;=5X 10° Pa/m for the source—fracture configuration
shown in Fig. 2{b). A Rayleigh-type interface wave RIW and a head wave
HW are observed to exist on the finite stiffness fracture in addition to the
body compressional and shear waves.

fracture interface waves (labeled RIW). A compliant fracture
also supports a compressional head wave (labeled HW)
which propagates along the fracture while continuously radi-
ating energy into the half-spaces.

Particle displacement waveforms for a receiver located
on the lower surface of the fracture at a distance of 45.79 m
from the source are displayed for a range of fracture stiff-
nesses in Figs. 6 and 7 for the horizontally and vertically

(a)horizontal displacement
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FIG. 6. Waveforms on the lower surface of the fracture at a distance of
4579 m from the source for the model shown in Fig. 2(a). The fracture is
assigned stiffness values of (1) k,=10°, (2) k2=5><109, 3y ky=2.5
X 10", and (4) k,=10"" Pa/m.
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FIG. 7. Waveforms on the lower surface of the fracture at a distance of
45.79 m from the source for the simulation configuration shown in Fig. 2(b).
The fracture is assigned stiffuess values of (1) k, =5x10°, (2) k,=10'°, (3)
k,=25%10", and (4) £, =10"" Pa/m.

polarized sources (Fig. 2). Four waves arc present and are
denoted by the superscripts PIW and RIW to indicate com-
pressional and Rayleigh interface waves, P+PIW to denote a
mixture of a compressional body wave and PIW, and
S-+RIW to denote a mixture of shear body wave and RIW,
The mixing of RIW and the shear wave resulted because
computational limitations prevented the use of a fracture
long enough to allow the two waves to separate from each
other.

A horizontally polarized source located on a welded
fracture (i.e., whole space) produces only a compressional
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FIG. 8. Displacements on the fracture surface at a distance of 45.79 m from
the source as a function of fracture stiffness for the model shown in Fig.
2(a).
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FIG. 9. Phase velocities of the symmetric and antisymmetric fracture inter-
tace waves as a function of fracture stiffness.

wave with horizontal displacement [Fig. 4(a)]. Therefore,
wP™WuRY and wR™W shown in Figs. 4(a) and 6 exist solely
due to the finite stiffness of the fracture, and hence are frac-
ture interface waves. Because of the symmetry of the
source—fracture configuration, w™V, «®V, and wR™Y must
be symmetric about the fracture, that is, they are symmetric
waves. Similarly, «"™, w"™, and «®'W displayed in Figs.
5(b) and 7 for a vertically polarized source are antisymmetric
about the fracture and are antisymmetric waves.
The displacements on the fracture surface, at a distance
of 45.79 m from the source, are displayed in Fig. 8 as a
function of fracture stiffnesses for a horizontally polarized
source [Fig. 2(a)]. For the source spectrum and seismic prop-
erties of the half-spaces used in this simulation, a tangential
fracture stiffness of k2;108 Pa/m is the threshold value
above which the displacements of all the waves traveling
along the fracture start to decrease with increasing fracture
stiffness. The decrease of uf™FIW P “LV, u®W and wRW
results because the stiffness of the fracture is too large to
resulf in focalization of compressional and shear waves along
the fracture. When the fracture stiffness increases above
10" Pa/m (nearly welded condition), the small-amplitude
Y is the near-field term traveling directly from ‘the
source,'? and the large-amplitude #™*™V is the compres-
sional body wave.

The phase velocities of the symmetric and antisymmet-
ric RIW interface waves are shown in Fig. 9 for a range of
fracture stiffnesses. The analytic phase velocities were com-
puted by numerical solution of the dispersion equations
given in Eqgs. (6) and (7). The numerical phase velocities
were obtained from the RIW by calculating L/(A®/w),

TABLE 1. Properties of the half-spaces.

where L is the distance between two receiver locations 29.83
m and 44.65 m from the source, A® is the phase difference
between the interface waves at the two locations, and w is the
angular frequency. The phase velocities displayed in Fig. 9
indicate that the interface waves supported by a fracture are
dispersive despite the zero thickness of the fracture. The nu-
merical and analytic velocities show general agreement.

B. Effect of half-space impedance

To investigate the effects of the acoustic impedance of
the half-spaces on fracture interface waves, a series of
boundary element simulations were performed using the
horizontal source {Fig. 2(a)] located on a 46.0-m-long frac-
ture with a stiffness k,=10° Pa/m. Both the upper and lower
surfaces of the fracture were discretized into 201 nodes using
100 quadratic elements 0.46 m in length. The computation
was carried out to 18.2 m in 460 time steps. The compres-
sional wave impedance and density of the half-spaces are
z,= 15080 000 m/s kg/m® and p=2600 kg/m® while the
shear wave impedance was varied from z,=9 880 000 to z,
=6 634 420 m/s kg/m?, as listed in Table I. The compres-
sional and shear wave velocities and PoissoOn’s ratios calcu-
lated from z,,, z,, and p are also given in Table I.

The waveforms recorded on the lower surface of the
fracture at a distance of 23.12 m from the source are dis-
played in Fig. 10, u" "W PV RIW Cand wRY waves have
different shapes and amplitudes for different values of the
shear wave impedance. Figure 11 displays the displacements
as a function of the shear wave impedance. As z, increases,
interface ‘waves me,' uR'W, and witW increase, and
uP*PW decreases. These variations in displacement indicate
that more seismic energy is partitioned from the body wave
part of u" PV into wmw, uR’W, and wiW with increasing
Zs -

C. Particle motions

Particle motions recorded along a vertical profile [Fig.
2(a)] are displayed in Fig. 12. A horizontally polarized
source was applied on the lower surface of the fracture with
stiffnesses k;=5X 10° and ky= 10° Pa/m. The particle mo-
tion of the S+RIW wave reverses from retrograde to pro-
grade at a depth of 0.17x; (A, is the wavelength of the shear
wave). The particle motion of the P+PIW wave reverses
from prograde near the fracture to retrograde at a depth of
0.17x,, (A, indicates the wavelength of the compressional
wave). The vertical component of the P+PIW wave and the
horizontal component of the S+RIW wave pass through zero

Zp Zs p Cr Cs

m/s kg/m? m/s kg/m> »kg/m® m/s m/s v

15 080 000 9 880 000 2600 5800 3 800.0 0.12
15 080 000 9508 720 2 600 5800 3657.2 0.17
15 080 600 9 035 000 2 600 5800 34750 0.22
15 080 000 8 464 560 2600 5 800 32556 0.27
15 080 000 7 596 160 2 600 5 800 2921.6 0.33
15 080 000 6634 420 2 600 5800 2551.7 0.38
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FIG. 10. Waveforms on the lower fracture surface at a distance of 23.12 m
from the source for the model shown in Fig. 2(a). The fracture stiffness is
k,=10° Pa/m, the . compressional wave impedance is zp
=15 080 000 m/s kg/n?, and the shear wave impedance is: (1) zg
=9 880 000, (2) z3=9 035000, and (3) z5=7 596 160 m/s kg/m®.

at depths of 0.17\, and 0.17A;, respectively. The vertical
displacement of the P+PIW wave reaches a maximum at
approximately 0.06\ , away from the fracture. Figure 12 also
displays particle motions of the P+PIW and S+RIW waves
which become less elliptically and more linearly polarized at
depths greater than 1.18\,, and particle trajectories that are
smaller on the upper half-space than the lower half-space.
Elliptical particle motions which decay exponentially
away from the fracture while changing from retrograde to
prograde are characteristic of Rayleigh fracture interface
waves,S'6 which can be viewed as stiffness-coupled free-
surface Rayleigh waves on the upper and lower fracture sur-
faces. The particle motions of Fig. 12 indicate that fracture

MW A e
o o o o ©

diéplacement amplitude

go1® 9010 10
zs (m/s-kg/m")

FIG. 11. Displacements on the fracture surface at a distance of 23.12 m
from the source as a function of the shear wave impedance of the halfspaces
for the simulation configuration shown in Fig. 2(a).
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FIG. 12. Particle motions of waves recorded along the vertical profile in Fig.
2(a). The fracture stiffnesses are k| = 10° and k,=5X% 10° Pw/m.

interface waves are localized to within 1.2\, of the fracture,
and that beyond this depth compressional and shear body
waves dominate. Smaller particle trajectories in the upper
half-space results because seismic energy is not completely
transmitted from the lower half-space to the upper half-space
because of the finite stiffness of the fracture. The particle
motion of the PIW interface wave is consistent with that of
water surface waves on water.

D. Generation by an off-fracture source

The effects of source depth on the generation of fracture
interface waves is examined using the model geometry
shown in Fig. 13 (see Table II). The 76.0-m-long fracture
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FIG. 13. Model used to examine the effects of source depth on the genera-
tion of fracturc interface waves.

was assigned stiffnesses of k;=k,=2.5X10" Pa/m. The
two half-spaces were assigned compressional and shear wave
velocities ¢, = 5800 m/s and ¢,= 3800 m/s, and a density p
=2600 kg/m®. The fracture was discretized into 100 qua-
dratic elements, and the computation was carried out to 20.1

ms in 310 time steps. The source depth was varied from

IA; to4\,.

Because of the geometric spreading, body waves at the
fracturc become smaller as the source moves deeper. The
variation of the incidence body wave will produce changes in
amplitude of the generated interface waves. In the analysis,
the fracture interface waves recorded on the fracture surfaces
are normalized by the amplitude of the incidence body wave.
Figure 14 displays normalized horizontal displacements of
the RIW interface wave recorded on the lower fracture sur-
face as a function of distance from the source along the frac-
ture for the simulation configuration shown in Fig. 13(a).
The numbers labeled on the curves are source depths in
terms of shear wave wavelengths.

For discussion convenience, the curve for source depth
z= 3\, in Fig. 14 is replotted in Fig. 15. The variation of the
normalized displacement can be explained as follows. From
E and A, the main mechanism is the reflection of the incident
body wave. The reflected wave decreases with increasing
incidence angle 6. At location A, a critical incidence angle
for the generation of the RIW interface wave is reached. As
the wave travels from A to B, the RIW interface wave is
developing, resulting in a continuous increase of the RIW
interface wave. After location B, the persisting but slower
increase of the normalized displacement with propagation
distance may be due to the decrease of the incident body
wave instead of the growth of the RIW interface wave. In
other words, the RIW interface wave may be already fully
developed at point B. _ .

The angle ¢ defined in Fig. 15 are listed in Tables IT and
il for the horizontally and vertically polarized sources, re-

TABLE II. Critical angles for the generation of the Rayleigh fracture inter-
face waves (RIW) for the source~fracture configuration shown in Fig. 13(a).

Source depth (X,) I 2 3 4

6 (degree) 726 674 4.9 63.4
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FIG. 14. Normalized horizontal displacements of the RIW interface wave
on the lower fracture surface as a function of distance from the source along
the fracture for the model shown in Fig. 13{a). The numbers labeled on the
curves arc the source depths. Symbol A denotes the shear wave wave-
length.

spectively [see Fig. 13(a) and (b)]. It is found from Tables H
and III that as source depth increases from A to 4A,, and
0 decreases from around 72.5 to 63 degrees.

lll. SUMMARY AND CONCLUSIONS

This paper has used boundary element simulations to
examine the properties of fracture interface waves generated
by a line source located near a single fracture. The fracture
was modeled as a displacement—discontinuity boundary con-
dition between two elastic half-spaces. The effects of frac-
ture stiffness and the seismic impedance of the half-spaces
on the fracture interface waves and the influences of the
source depth on the generation of the fracture interface
waves were examined. :

The numerical simulations reveal that symmetric and an-
tisymmetric Rayleigh fracture interface waves can be gener-
ated by a directional source located on or near the fracture
and polarized in the tangential and orthogonal directions
with respect to the fracture, respectively. The symmetric in-
terface wave is supported by the normal fracture stiffness,
and the antisymmetric fracture interface wave is supported
by the tangential fracture stiffness. The velocity and ampli-
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FIG. 15. Normalized displacement on the fracture surface as a function of
the critical angle @ for the generation of RIW interface waves.
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TABLE HI. Critical angles for the generation of RIW interfuce waves for
the source-fracture configuration shown in Fig. £3(b).

)
[
IS

- Source depth (X)) 1

0 (degree) 72.4 67.2 64.7 63.3

tude of the interface waves are functions of the ratio of the
fracture impedance to the half-space impedance. There is a
- threshold value of the fracture stitfness above which the frac-
ture interface waves start to decrease in amplitude with in-
creasing fracture stiffness. The interface waves also increase
as the shear wave acoustic impedance increases. With in-
creasing fracture stiffness from the threshold to infinity, the
phase velocity of the RIW interface waves increase from the
free-surface Rayleigh wave velocity to the shear wave veloc-
ity. The symmetric interface wave propagates faster than the
antisymmetric interface wave for a given value of the frac-
ture stiffness and the half-space impedance.

The PIW and RIW waves exhibit elliptical particle mo-
tion because of the existence of a phase shift between two
displacement components. Particle motion ellipse of the PIW
wave is polarized largely in the horizontal direction while
that of the RIW wave is polarized more vertically than hori-
zontally. The direction of the particle motion of the RIW
wave is retrograde near the fracture and reverses to prograde
at a depth of less than a wavelength, while the particle mo-
tion of the PIW wave changes from prograde near the frac-
ture to retrograde. The particle motion of the PIW and RIW
interface waves are consistent, respectively, with that of wa-
ter surface waves and the free-surface Rayleigh wave. In
addition to the two fracture interface waves, a head wave is
also observed to exist on a finite stiffness fracture.

These results may find direct applications to seismic de-
tection and characterization of fractures in the rock. For ex-
ample, the leaky nature of the fracture hedd wave may allow
fractures to be detected by receivers located off the fracture.
The sensitivities of the symmetric and antisymmetric inter-
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face waves to the normal and tangential fracture stiffnesses,
respectively, may allow separate estimates of these proper-
ties from the velocities of fracture interface waves.
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